8.5 I can determine the domain and range of quadratic functions.

State the domain and range for each quadratic

1)
$$2x^2 - 12x - 10 = 0$$

2)
$$5n^2 + 9n - 12 = 0$$

3)
$$7v^2 - 11v - 7 = 0$$

4)
$$6b^2 - 9b - 15 = 0$$

5)
$$r^2 - 9 = 0$$

6)
$$3m^2 + 10m - 11 = 0$$

7)
$$2n^2 - 6 = 0$$

8)
$$x^2 - 6 = 0$$

8.6 I can solve quadratic systems graphically with and without technology.

Solve the quadratic equation.

1)
$$3k^2 - 7k - 48 = 0$$

2)
$$6a^2 + a - 12 = 0$$

3)
$$2x^2 + 7x - 85 = 0$$

4)
$$6x^2 + 5x - 14 = 0$$

Find the zeros of the function

5)
$$10x^2 + 5x - 4 = 0$$

6)
$$2m^2 + m - 8 = 0$$

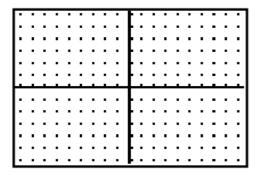
7)
$$5n^2 - 80 = 0$$

8)
$$6p^2 - 9p - 1 = 0$$

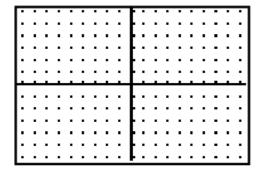
Find the x intercepts of the quadratic function

9)
$$4r^2 - 100 = 0$$

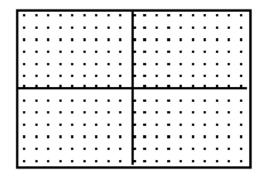
10)
$$b^2 - 2 = 0$$

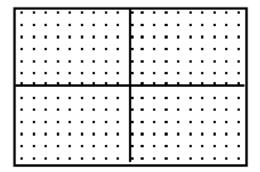

11)
$$10n^2 - 5n - 8 = 0$$

12)
$$4x^2 + x - 60 = 0$$


8.9 I can explain the transformations of quadratic functions.

Identify the transformations to the parent function $y=x^2$ in the following equations. Graph each function


$$y = (x+2)^2 - 3$$


$$y = 2(x-3)^2 - 1$$

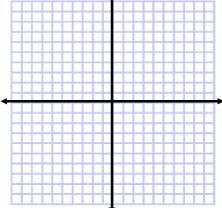
$$y = -(x-1)^2 + 4$$

$$y = -\frac{1}{2}(x+2)^2$$

Describe the graph of each function in terms of transformations on the graph of y=x^2

a)
$$y = 2(x + 3)^2$$

b)
$$f(x) = -x^2 + 5$$


c)
$$g(x) = 4(x+2)^2 - 8$$

d)
$$h(x) = -3(x-1)^2 - 1$$

8.8 I can use transformations to draw the graph of quadratic functions.

The graph of $f(x) = x^2$ has been stretched vertically by a factor of 10 and translated 5 units to the right and 8 units down.

- **a)** Write the equation of the graph resulting from the transformations.
- **b)** Sketch the graph of $f(x) = x^2$ and its image after the transformations.

Example 4: Use the description to write a transformed quadratic function in vertex form.

- a) The parent function $f(x) = x^2$ is vertically stretched by a factor of 4/3 and then translated 2 units right and 5 units down
- b) The parent function $f(x) = x^2$ is reflected across the x-axis and translated 5 units left and 1 unit up to create g.

8.10 I can determine a quadratic function that fits a graph.

Find a quadratic model for the set of values.

1.
$$(-2, -20), (0, -4), (4, -20)$$

2.

x	-2	0	4
f(x)	1	-3	85

3. Find a quadratic function to model the values in the table. Predict the value of y for x = 6.

x	у	
-1	2	
0	-2	
3	10	

Find a quadratic model for the set of values.

2.

x	-2	0	4
f(x)	-24	-4	-36

3. Find a quadratic function to model the values in the table. Predict the value of y for x = 7.

х	у
-1	2
0	2
3	-34

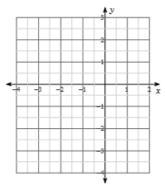
8.11 I can graph and analyze real-world problems involving quadratics.

A manufacturer determines that the number of drills it can sell is given by the formula

 $D = -3p^2 + 180p - 285$, where p is the price of the drills in dollars.

- a. At what price will the manufacturer sell the maximum number of drills?
- **b.** What is the maximum number of drills that can be sold?

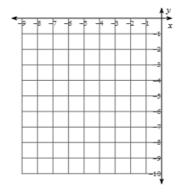
Dalco Manufacturing estimates that its weekly profit, P, in hundreds of dollars, can be approximated by the formula $P = -3x^2 + 6x + 10$, where x is the number of units produced per week, in thousands.

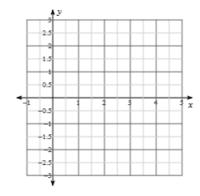

- a. How many units should the company produce per week to earn the maximum profit?
- b. Find the maximum weekly profit.

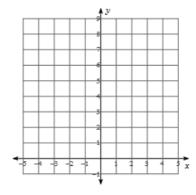
The function $y = -16t^2 + 486$ models the height y in feet of a stone t seconds after it is dropped from the edge of a vertical cliff. How long will it take the stone to hit the ground? Round to the nearest hundredth of a second.

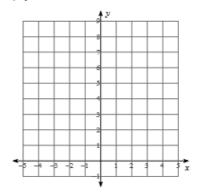
8.12 I can graph quadratic inequalities with and without technology

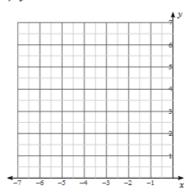
Sketch the graph of each function.

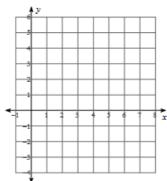

1)
$$y \le -\frac{1}{3}x^2$$


3)
$$y \ge -2x^2$$


5)
$$y > -2x^2 - 16x - 33$$


7)
$$y < \frac{1}{2}(x-2)^2 - 1$$


2)
$$y \le 2x^2$$


4)
$$y < 2x^2$$

6)
$$y > x^2 + 8x + 18$$

8)
$$y \le 2(x-4)^2 - 3$$

