

Theorem

Rational Root Theorem

If $\frac{p}{q}$ is in simplest form and is a rational root of the polynomial equation $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0$ with integer coefficients, then p must be a factor of a_0 and q must be a factor of a_n .

Step 1: List the possible rational roots.

The leading coefficient is 3. The constant term is 5. By the Rational Root Theorem, *the only possible rational roots of the equation have the form* $\frac{\text{factors of 5}}{\text{factors of 3}}$.

The factors of 5 are ±5 and ±1 and ±5. The factors of 3 are ±3 and ±1. The only possible rational roots are ±5, $\pm \frac{5}{3}$, ±1, $\pm \frac{1}{3}$.

Step 1: List the possible rational roots.

The leading coefficient is 5. The constant term is 20. By the Rational Root Theorem, *the only possible roots of the equation* have the form $\frac{\text{factors of} - 20}{\text{factors of 5}}$.

The factors of –20 are ±1 and ±20, ±2 and ±10, and ±4 and ±5. The only factors of 5 are ±1 and ±5. The only possible rational roots are $\pm \frac{1}{5}$, $\pm \frac{2}{5}$, $\pm \frac{4}{5}$, ±1, ±2, ±4, ±5, ±10, and ±20.

Remainder

root you found in Step 2 to find the quotient.

