Theorem

Rational Root Theorem

If $\frac{p}{q}$ is in simplest form and is a rational root of the polynomial equation $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=0$ with integer coefficients, then p must be a factor of a_{0} and q must be a factor of a_{n}. (1)
(1) ехамрLIE Find the rational roots of $3 x^{3}-x^{2}-15 x+5$.

Step 1: List the possible rational roots.

The leading coefficient is 3 . The constant term is 5 . By the Rational Root Theorem, the only possible rational roots of the equation have the form $\frac{\text { factors of } 5}{\text { factors of } 3}$.

The factors of 5 are ± 5 and ± 1 and ± 5. The factors of 3 are ± 3 and ± 1. The only possible rational roots are $\pm 5, \pm \frac{5}{3}, \pm 1, \pm \frac{1}{3}$.

(continued)

Step 2: Test each possible rational root.

$$
\begin{aligned}
& \text { 5: } 3(5)^{3}-(5)^{2}-15(5)+5=280 \neq 0 \\
& -5: 3(-5)^{3}-(-5)^{2}-15(-5)+5=-320 \neq 0 \\
& \frac{5}{3}: 3\left(\frac{5}{3}\right)^{3}-\left(\frac{5}{3}\right)^{2}-15\left(\frac{5}{3}\right)+5=-8 . \overline{8} \neq 0 \\
& -\frac{5}{3}: 3\left(-\frac{5}{3}\right)^{3}-\left(-\frac{5}{3}\right)^{2}-15\left(-\frac{5}{3}\right)+5=-13 . \overline{3} \neq 0 \\
& 1: 3(1)^{3}-(1)^{2}-15(1)+5=-8 \neq 0 \\
& -1: 3(-1)^{3}-(-1)^{2}-15(-1)+5=16 \neq 0 \\
& \frac{1}{3}: 3\left(\frac{1}{3}\right)^{3}-\left(\frac{1}{3}\right)^{2}-15\left(\frac{1}{3}\right)+5=0 \text { So } \frac{1}{3} \text { is a root. } \\
& -\frac{1}{3}: 3\left(-\frac{1}{3}\right)^{3}-\left(-\frac{1}{3}\right)^{2}-15\left(-\frac{1}{3}\right)+5=9 . \overline{7} \neq 0
\end{aligned}
$$

The only rational root of $3 x^{3}-x^{2}-15 x+5=0$ is $\frac{1}{3}$.
(2) Example Find the roots of $5 x^{3}-24 x^{2}+41 x-20=0$.

Step 1: List the possible rational roots.

The leading coefficient is 5 . The constant term is 20. By the Rational Root Theorem, the only possible roots of the equation have the form $\frac{\text { factors of }-20}{\text { factors of } 5}$.

The factors of -20 are ± 1 and $\pm 20, \pm 2$ and ± 10, and ± 4 and ± 5.
The only factors of 5 are ± 1 and ± 5. The only possible rational roots are $\pm \frac{1}{5}, \pm \frac{2}{5}, \pm \frac{4}{5}, \pm 1, \pm 2, \pm 4, \pm 5, \pm 10$, and ± 20.

2 EXAMPLE (continued)

Step 2: Test each possible rational root until you find a root.

$$
\begin{aligned}
& \text { Test } \frac{1}{5}: 5\left(\frac{1}{5}\right)^{3}-24\left(\frac{1}{5}\right)^{2} \pm 41\left(\frac{1}{5}\right)-20=-12.72 \neq 0 \\
& \text { Test }-\frac{1}{5}: 5\left(-\frac{1}{5}\right)^{3}-24\left(-\frac{1}{5}\right)^{2} \pm 41\left(-\frac{1}{5}\right)-2=-29.2 \neq 0
\end{aligned}
$$

$$
\text { Test } \frac{2}{5}: 5\left(\frac{2}{5}\right)^{3}-24\left(\frac{2}{5}\right)^{2} \pm 41\left(\frac{2}{5}\right)-20=-7.12 \neq 0
$$

$$
\text { Test }-\frac{2}{5}: 5\left(-\frac{2}{5}\right)^{3}-24\left(-\frac{2}{5}\right)^{2} \pm 41\left(-\frac{2}{5}\right)-20=-40.56 \neq 0
$$

$$
\text { Test } \frac{4}{5}: 5\left(\frac{4}{5}\right)^{3}-24\left(\frac{4}{5}\right)^{2} \pm 41\left(\frac{4}{5}\right)-20=0 \text { So } \frac{4}{5} \text { is a root. }
$$

(2) EXAMPLE (continued)

Step 4: Find the roots of $5 x^{2}-20 x+25=0$.

$$
\begin{aligned}
5 x^{2}-20 x+25 & =0 \\
5\left(x^{2}-4 x+5\right) & =0 \\
x^{2}-4 x+5 & =0 \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(5)}}{2(1)} \\
& =\frac{4 \pm \sqrt{-4}}{2} \\
& =\frac{4 \pm 2 i}{2} \\
& =2 \pm i
\end{aligned}
$$

Factor out the GCF, 5.

Quadratic Formula

Substitute 1 for $a,-4$ for b, and 5 for c.

Use order of operations.
$\sqrt{-1}=i$.
Simplify.
The roots of $5 x^{3}-24 x^{2}+41 x-20=0$ are $\frac{4}{5}, 2+i$, and $2-i$.

