Objective

The student will be able to:

solve systems of equations by graphing.

What is a system of equations?

- A system of equations is when you have two or more equations using the same variables.
- The solution to the system is the point that satisfies ALL of the equations. This point will be an ordered pair.
- When graphing, you will encounter three possibilities.

Intersecting Lines

- The point where the lines intersect is your solution.
- The solution of this graph is $(1,2)$

Parallel Lines

- These lines never intersect!
- Since the lines never cross, there is NO SOLUTION!
- Parallel lines have the same slope with different y-intercepts.

Slope $=\frac{2}{1}=2$
y-intercept $=2$
y-intercept $=-1$

Coinciding Lines

- These lines are the same!
- Since the lines are on top of each other, there are INFINITELY MANY SOLUTIONS!
- Coinciding lines have the same slope and y-intercepts.

Slope $=\frac{2}{1}=2$
y-intercept $=-1$

What is the solution of the system graphed below?

$(2,-2)$
2. $(-2,2)$
3. No solution
4. Infinitely many solutions

1) Find the solution to the following

 system:$$
\begin{gathered}
2 x+y=4 \\
x-y=2
\end{gathered}
$$

Graph both equations. I will graph using x - and y-intercepts (plug in zeros).

$$
\begin{array}{cc}
2 x+y=4 & x-y=2 \\
(0,4) \text { and }(2,0) & (0,-2) \text { and }(2,0)
\end{array}
$$

Graph the ordered pairs.

Graph the equations.

$2 x+y=4$
$(0,4)$ and $(2,0)$
$x-y=2$
(0, -2) and (2, 0)

Where do the lines intersect?
$(2,0)$

Check your answer!

To check your answer, plug the point back into both equations.
$2 x+y=4$
$2(2)+(0)=4$

$x-y=2$
$(2)-(0)=2$
Nice job...let's try another!

2) Find the solution to the following

 system:$$
\begin{gathered}
y=2 x-3 \\
-2 x+y=1
\end{gathered}
$$

Graph both equations. Put both equations in slope-intercept or standard form. I' II do slope-intercept form on this one!

$$
\begin{aligned}
& y=2 x-3 \\
& y=2 x+1
\end{aligned}
$$

Graph using slope and y-intercept

Graph the equations.

$$
\begin{aligned}
& y=2 x-3 \\
& m=2 \text { and } b=-3 \\
& y=2 x+1 \\
& m=2 \text { and } b=1
\end{aligned}
$$

Where do the lines intersect? No solution!

Notice that the slopes are the same with different y-intercepts. If you recognize this early, you don't have to graph them!

What is the solution of this system?

$$
\begin{aligned}
& 3 x-y=8 \\
& 2 y=6 x-16
\end{aligned}
$$

1. $(3,1)$
2. $(4,4)$
3. No solution Infinitely many solutions

Solving a system of equations by graphing.

Let's summarize! There are 3 steps to solving a system using a graph.

Step 1: Graph both equations.

Step 2: Do the graphs intersect?

Step 3: Check your solution.

Graph using slope and y - intercept or x - and y -intercepts. Be sure to use a ruler and graph paper!

This is the solution! LABEL the solution!

Substitute the x and y values into both equations to verify the point is a solution to both equations.

Objective

The student will be able to:

solve systems of equations using substitution.

Solving Systems of Equations

- You can solve a system of equations using different methods. The idea is to determine which method is easiest for that particular problem.
- These notes show how to solve the system algebraically using SUBSTITUTION.

Solving a system of equations by substitution

Step 4: Plug back in to find the other variable.

Step 5: Check your solution.

Pick the easier equation. The goal is to get $y=; x=; a=$; etc.

Put the equation solved in Step 1 into the other equation.

Get the variable by itself.

Substitute the value of the variable into the equation.

Substitute your ordered pair into BOTH equations.

1) Solve the system using substitution

$$
\begin{aligned}
& x+y=5 \\
& y=3+x
\end{aligned}
$$

Step 1: Solve an equation for one variable.

Step 2: Substitute

The second equation is already solved for y !

$$
\begin{gathered}
x+y=5 \\
x+(3+x)=5 \\
2 x+3=5 \\
2 x=2 \\
x=1
\end{gathered}
$$

1) Solve the system using substitution

$$
\begin{aligned}
& x+y=5 \\
& y=3+x
\end{aligned}
$$

Step 4: Plug back in to find the other variable.

Step 5: Check your solution.

$$
x+y=5
$$

(1) $+y=5$

$$
y=4
$$

$(1,4)$
$(1)+(4)=5$
$(4)=3+(1)$
The solution is $(1,4)$. What do you think the answer would be if you graphed the two equations?

Which answer checks correctly?

$$
\begin{gathered}
3 x-y=4 \\
x=4 y-17
\end{gathered}
$$

1. $(2,2)$
2. $(5,3)$
$(3,5)$
3. $(3,-5)$

2) Solve the system using substitution

$$
\begin{gathered}
3 y+x=7 \\
4 x-2 y=0
\end{gathered}
$$

It is easiest to solve the first equation for x .

$$
\begin{gathered}
3 y+x=7 \\
-3 y \quad-3 y \\
\hline x=-3 y+7 \\
4 x-2 y=0 \\
4(-3 y+7)-2 y=0
\end{gathered}
$$

2) Solve the system using substitution

$$
\begin{gathered}
3 y+x=7 \\
4 x-2 y=0
\end{gathered}
$$

Step 3: Solve the equation.

Step 4: Plug back in to find the other variable.
$-12 y+28-2 y=0$
$-14 y+28=0$
$-14 y=-28$
$y=2$
$4 x-2 y=0$
$4 x-2(2)=0$
$4 x-4=0$
$4 x=4$
$x=1$

2) Solve the system using substitution

$$
\begin{gathered}
3 y+x=7 \\
4 x-2 y=0
\end{gathered}
$$

Step 5: Check your solution.

$$
\begin{gathered}
(1,2) \\
3(2)+(1)=7 \\
4(1)-2(2)=0
\end{gathered}
$$

When is solving systems by substitution easier to do than graphing?
When only one of the equations has a variable already isolated (like in example \#1).

If you solved the first equation for x, what would be substituted into the bottom equation.

$$
\begin{aligned}
& 2 x+4 y=4 \\
& 3 x+2 y=22
\end{aligned}
$$

1. $-4 y+4$
2. $-2 y+2$
3. $-2 x+4$
4. $-2 y+22$

3) Solve the system using substitution

$$
\begin{aligned}
& x=3-y \\
& x+y=7
\end{aligned}
$$

When the result is FALSE, the answer is NO SOLUTIONS.

3) Solve the system using substitution

$$
\begin{gathered}
2 x+y=4 \\
4 x+2 y=8
\end{gathered}
$$

Step 1: Solve an equation for one variable.

Step 2: Substitute

Step 3: Solve the equation.

The first equation is easiest to solved for y !

$$
\begin{gathered}
y=-2 x+4 \\
4 x+2 y=8 \\
4 x+2(-2 x+4)=8 \\
4 x-4 x+8=8 \\
8=8
\end{gathered}
$$

This is also a special case.
Does $8=8$? TRUE!

When the result is TRUE, the answer is INFINITELY MANY SOLUTIONS.

What does it mean if the result is "TRUE"?

1. The lines intersect
2. The lines are parallel

The lines are coinciding
The lines reciprocate
5. I can spell my name

Objective

The student will be able to:

solve systems of equations using elimination with multiplication.

Solving a system of equations by elimination using multiplication.

Step 1: Put the equations in Standard Form.

Step 2: Determine which variable to eliminate.

Step 3: Multiply the equations and solve.

Step 4: Plug back in to find the other variable.

Step 5: Check your solution.

Standard Form: $\mathrm{Ax}+\mathrm{By}=\mathrm{C}$

Look for variables that have the same coefficient.

Solve for the variable.

Substitute the value of the variable into the equation.

Substitute your ordered pair into BOTH equations.

1) Solve the system using elimination.

$$
\begin{gathered}
2 x+2 y=6 \\
3 x-y=5
\end{gathered}
$$

Step 1: Put the equations in Standard Form.

Step 2: Determine which variable to eliminate.

They already are!

None of the coefficients are the same!
Find the least common multiple of each variable.
LCM $=6 x$, LCM $=2 y$ Which is easier to obtain?

2y
(you only have to multiply the bottom equation by 2)

1) Solve the system using elimination.

$$
\begin{gathered}
2 x+2 y=6 \\
3 x-y=5
\end{gathered}
$$

Multiply the bottom equation by 2

Step 3: Multiply the equations and solve.

Step 4: Plug back in to find the other variable.

$$
\begin{aligned}
& 2 x+2 y=6 \quad 2 x+2 y=6 \\
& \text { (2) }(3 x-y=5)(+) \quad 6 x-2 y=10 \\
& 8 \mathrm{x}=16 \\
& x=2
\end{aligned}
$$

$$
\begin{gathered}
2(2)+2 y=6 \\
4+2 y=6 \\
2 y=2 \\
y=1
\end{gathered}
$$

1) Solve the system using elimination.

$$
\begin{gathered}
2 x+2 y=6 \\
3 x-y=5
\end{gathered}
$$

Step 5: Check your solution.

$$
\begin{gathered}
(2,1) \\
2(2)+2(1)=6 \\
3(2)-(1)=5
\end{gathered}
$$

Solving with multiplication adds one more step to the elimination process.

2) Solve the system using elimination.

$$
\begin{gathered}
x+4 y=7 \\
4 x-3 y=9
\end{gathered}
$$

Step 1: Put the equations in Standard Form.

Step 2: Determine which variable to eliminate.

They already are!

Find the least common multiple of each variable.
LCM $=4 x$, LCM $=12 y$
Which is easier to obtain?
$4 x$
(you only have to multiply the top equation by -4 to make them inverses)

2) Solve the system using elimination.

$$
\begin{gathered}
x+4 y=7 \\
4 x-3 y=9
\end{gathered}
$$

Step 3: Multiply the
Multiply the top equation by -4

$$
\begin{array}{r}
(-4)(x+4 y=7) \quad \begin{array}{r}
-4 k-16 y=-28 \\
4 x-3 y=9) \\
\hline(+) \quad 4 x-3 y=9 \\
\hline-19 y=-19
\end{array} \\
y=1
\end{array}
$$

Step 4: Plug back in to find the other variable.

$$
\begin{gathered}
x+4(1)=7 \\
x+4=7 \\
x=3
\end{gathered}
$$

2) Solve the system using elimination.

$$
\begin{gathered}
x+4 y=7 \\
4 x-3 y=9
\end{gathered}
$$

Step 5: Check your solution.

$$
\begin{gathered}
(3,1) \\
(3)+4(1)=7 \\
4(3)-3(1)=9
\end{gathered}
$$

What is the first step when solving with elimination?

1. Add or subtract the equations.
2. Multiply the equations.
3. Plug numbers into the equation.
4. Solve for a variable.
5. Check your answer.

Determine which variable to eliminate.
7. Put the equations in standard form.

Which variable is easier to eliminate?

$$
\begin{aligned}
& 3 x+y=4 \\
& 4 x+4 y=6
\end{aligned}
$$

1. x
2. y
3. 6
4. 4

3) Solve the system using elimination.

$$
\begin{gathered}
3 x+4 y=-1 \\
4 x-3 y=7
\end{gathered}
$$

Step 1: Put the equations in Standard Form.

Step 2: Determine which variable to eliminate.

They already are!

Find the least common multiple of each variable.
LCM = 12x, LCM = 12y
Which is easier to obtain?
Either! I' II pick y because the signs are already opposite.

3) Solve the system using elimination.

$$
\begin{gathered}
3 x+4 y=-1 \\
4 x-3 y=7
\end{gathered}
$$

Step 3: Multiply the equations and solve.

Step 4: Plug back in to find the other variable.

Multiply both equations

$$
\begin{aligned}
\begin{array}{ll}
(3)(3 x+4 y=-1) & 9 x+12 y \\
(4)(4 x-3 y=7) & (+) 16 x-12 y \\
\hline 25 x & =28 \\
2 & =25
\end{array} \\
x=1
\end{aligned}
$$

$$
\begin{gathered}
3(1)+4 y=-1 \\
3+4 y=-1 \\
4 y=-4 \\
y=-1
\end{gathered}
$$

3) Solve the system using elimination.

$$
\begin{gathered}
3 x+4 y=-1 \\
4 x-3 y=7
\end{gathered}
$$

Step 5: Check your solution.

$$
\begin{gathered}
(1,-1) \\
3(1)+4(-1)=-1 \\
4(1)-3(-1)=7
\end{gathered}
$$

What is the best number to multiply the top equation by to eliminate the x 's?

$$
\begin{aligned}
& 3 x+y=4 \\
& 6 x+4 y=6
\end{aligned}
$$

1. -4
2. -2
3. 2
4. 4

Solve using elimination.

$$
\begin{aligned}
& 2 x-3 y=1 \\
& x+2 y=-3
\end{aligned}
$$

1. $(2,1)$
2. $(1,-2)$
3. $(5,3)$
4. $(-1,-1)$
