\qquad Class \qquad Date \qquad

OBJECTIVE: Factoring quadratic expressions
MATERIALS: None

Example

Factor the expression $6 x^{2}-5 x-4$.
$a=6, b=-5$, and $c=-4 \quad \longleftarrow \quad$ Find $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c}; they are the coefficients of each term.
$a c=-24$ and $b=-5 \quad \longleftarrow \quad$ We are looking for factors with product $\boldsymbol{a} \boldsymbol{c}$ and sum \boldsymbol{b}.

Factors of $\mathbf{- 2 4}$	$1,-24$	$-1,24$	$2,-12$	$-2,12$	$3,-8$	$-3,8$	$4,-6$	$-4,6$
Sum of factors	-23	23	-10	10	-5	5	-2	2

The factors 3 and -8 are the combination whose sum is -5 .
$\underbrace{6 x^{2}+3 x}_{3 x(2 x+1)}-\underbrace{8 x-4}_{-4(2 x+1)}$
$\longleftarrow \quad$ Rewrite the middle term using the factors you found.
$3 x(2 x+1)-4(2 x+1) \quad \longleftarrow \quad$ Find common factors by grouping the terms in pairs.
$(3 x-4)(2 x+1) \quad$ Rewrite using the Distributive Property.
Check: $\quad(3 x-4)(2 x+1) \quad \longleftarrow \quad$ You can check your answer by multiplying it back together.

$$
6 x^{2}+3 x-8 x-4
$$

$$
6 x^{2}-5 x-4
$$

Remember that not all quadratic expressions are factorable.

Exercises

Factor each expression.

1. $x^{2}+6 x+8$
2. $x^{2}-4 x+3$
3. $2 x^{2}-6 x+4$
4. $2 x^{2}-11 x+5$
5. $2 x^{2}-7 x-4$
6. $4 x^{2}+16 x+15$
7. $x^{2}-5 x-14$
8. $7 x^{2}-19 x-6$
9. $x^{2}-x-72$
10. $2 x^{2}+9 x+7$
11. $x^{2}+12 x+32$
12. $4 x^{2}-28 x+49$
13. $x^{2}-3 x-10$
14. $2 x^{2}+9 x+4$
15. $9 x^{2}-6 x+1$
16. $x^{2}-10 x+9$
17. $x^{2}+4 x-12$
18. $x^{2}+7 x+10$
19. $x^{2}-8 x+12$
20. $2 x^{2}-5 x-3$
21. $x^{2}-6 x+5$
22. $3 x^{2}+2 x-8$
23. $2 x^{2}+11 x+5$
24. $x^{2}+3 x-28$
