\qquad Class \qquad Date \qquad

Reteaching 5-2

OBJECTIVE: Graphing a parabola using the
MATERIALS: Graph paper vertex and axis of symmetry

- The graph of a quadratic function, $y=a x^{2}+b x+c$, where $a \neq 0$, is a parabola.
- The axis of symmetry is the line $x=-\frac{b}{2 a}$.
- The x-coordinate of the vertex is $-\frac{b}{2 a}$. The y-coordinate of the vertex is $y=f\left(-\frac{b}{2 a}\right)$, or the y-value when $x=-\frac{b}{2 a}$.
- The y-intercept is $(0, c)$.

Example

Graph $y=2 x^{2}-8 x+5$.
$x=-\frac{b}{2 a}=\frac{-(-8)}{2(2)}=\frac{8}{4}=2 \quad$ Find the equation of the axis of symmetry.

$$
x \text {-coordinate of vertex: } 2 \quad \longleftarrow-\frac{\boldsymbol{b}}{\boldsymbol{2 a}}
$$

$$
f\left(-\frac{b}{2 a}\right)=f(2)=2(2)^{2}-8(2)+5 \longleftarrow \quad \text { Find the } \boldsymbol{y} \text {-value when } \boldsymbol{x}=\mathbf{2} .
$$

$$
=8-16+5
$$

$$
=-3
$$

y-coordinate of vertex: -3
y-intercept: $(0,5)$
$\longleftarrow \quad$ The y-intercept is at $(0, c)=(0,5)$.

$\longleftarrow \quad$ Since a is positive, the graph opens upward, and the vertex is at the bottom of the graph. Plot the vertex and draw the axis of symmetry. Plot $(0,5)$ and its corresponding point on the other side of the axis of symmetry.

Exercises

Graph each parabola. Label the vertex and the axis of symmetry.

1. $y=x^{2}-4 x+7$
2. $y=x^{2}+8 x+11$
3. $y=-3 x^{2}+6 x-9$
4. $y=-x^{2}-8 x-15$
5. $y=2 x^{2}-8 x+1$
6. $y=-2 x^{2}-12 x-7$
