Summary

Families of Exponential Functions

Parent function:

Stretch (
$$|a| > 1$$
)

Shrink
$$(0 < |a| < 1)$$

Reflection (a < 0) in x-axis

Translation (horizontal by
$$h$$
; vertical by k):

Combined:

$$y = b^x$$

$$y = ab^x$$

$$y = b^{x-h} + k$$

$$y = b^{x-h} + k$$
$$y = ab^{x-h} + k$$

1 EXAMPLE

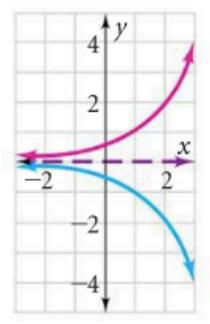
Graphing $y = ab^x$ for 0 < |a| < 1

Graph $y = \frac{1}{2} \cdot 2^x$ and $y = -\frac{1}{2} \cdot 2^x$. Label the asymptote of each graph.

Step 1 Make a table of values.

x	$y = \frac{1}{2} \cdot 2^{x}$	$y=-\frac{1}{2}\cdot 2^{\chi}$
-2	$\frac{1}{8}$	$-\frac{1}{8}$
-1	$\frac{1}{4}$	$-\frac{1}{4}$
0	$\frac{1}{2}$	$-\frac{1}{2}$
1	1	-1
2	2	-2
3	4	-4

Step 2 Graph the functions.



The *y*-intercept is a, or $\frac{1}{2}$.

The asymptote is y = 0 for both graphs.

The *y*-intercept is *a*, or $-\frac{1}{2}$.

$$y = \frac{1}{2} \cdot 2^x$$
 shrinks $y = 2^x$ by a factor of $\frac{1}{2}$.
 $y = -\frac{1}{2} \cdot 2^x$ reflects $y = \frac{1}{2} \cdot 2^x$ in the x-axis.

2 EXAMPLE

Translating $y = ab^x$

Graph the stretch $y = 8(\frac{1}{2})^x$ and then the translation $y = 8(\frac{1}{2})^{x+2} + 3$.

Step 1 Graph
$$y = 8(\frac{1}{2})^x$$
. The horizontal asymptote is $y = 0$.

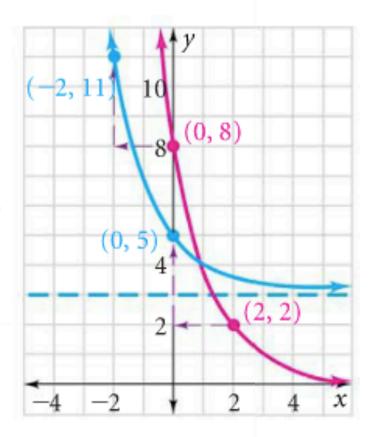
Step 2 For
$$y = 8\left(\frac{1}{2}\right)^{x+2} + 3$$
, $h = -2$ and $k = 3$. So shift the $y = 8\left(\frac{1}{2}\right)^x$ graph 2 units left and 3 units up. The horizontal asymptote is $y = 3$.

2 Graph the stretch $y = 9(3)^x$ and then each translation.

a.
$$y = 9(3)^{x+1}$$

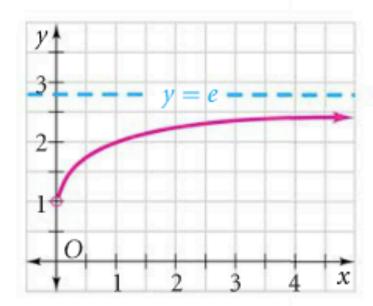
b.
$$y = 9(3)^x - 4$$

c.
$$y = 9(3)^{x-3} - 1$$



At the right is part of the graph of the function $y = \left(1 + \frac{1}{x}\right)^x$. One of the graph's asymptotes is y = e, where e is an irrational number approximately equal to 2.71828.

Exponential functions with a base of e are useful for describing continuous growth or decay. Your graphing calculator has a key for e^x .

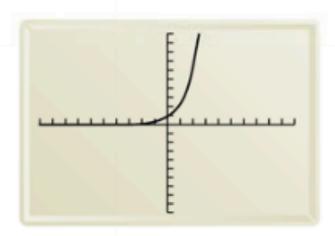


4 EXAMPLE

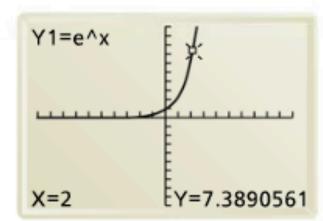
Evaluating e^x

Graph $y = e^x$. Evaluate e^2 to four decimal places.

Step 1 Graph
$$y = e^x$$
.



Step 2 Find y when x = 2.



Graph each function as a transformation of its parent function.

9.
$$y = 8^x + 5$$

9.
$$y = 8^x + 5$$
 10. $y = 15\left(\frac{4}{3}\right)^x - 8$ **11.** $y = -(0.3)^{x-2}$

11.
$$y = -(0.3)^{x-2}$$

12.
$$y = -2(5)^{x+3}$$

12.
$$y = -2(5)^{x+3}$$
 13. $y = 52\left(\frac{2}{13}\right)^{x-1} + 26$ **14.** $y = 9\left(\frac{1}{3}\right)^{x+7} - 3$

14.
$$y = 9(\frac{1}{3})^{x+7} - 3$$

Use the graph of $y = e^x$ to evaluate each expression to four decimal places.

18.
$$e^3$$

19.
$$e^6$$

18.
$$e^3$$
 19. e^6 **20.** e^{-2} **21.** e^0 **22.** $e^{\frac{5}{2}}$

21.
$$e^0$$

22.
$$e^{\frac{5}{2}}$$