5-1

## Chapter 5

## Probability

# 5-5 5-2 Sample Spaces and Probability 

- A probability experiment is a process that leads to well-defined results called outcomes.
- An outcome is the result of a single trial of a probability experiment.
- NOTE: A tree diagram can be used as a systematic way to find all possible outcomes of a probability experiment.

5-7 5-2 Sample Spaces - Examples

| EXPERIMENT | SAMPLE SPACE |
| :--- | :--- |
| Toss one coin | H, T |
| Roll a die | $1,2,3,4,5,6$ |
| Answer a true- <br> false question | True, False |
| Toss two coins | HH, HT, TH, TT |

## 5-3 The Addition Rules for Probability

- Two events are mutually exclusive if they cannot occur at the same time (i.e. they have no outcomes in common).


## 5-3 The Addition Rules for Probability

## $A$ and $B$ are mutually exclusive



## 5-3 Addition Rule 1

When two events $A$ and $B$ are mutually exclusive, the probability that $A$ or $B$ will occur is

$$
P(A \text { or } B)=P(A)+P(B)
$$

## 5-3 Addition Rule 1- Example

- At a political rally, there are 20 Republicans (R), 13 Democrats (D), and 6 Independents (I). If a person is selected, find the probability that he or she is either a Democrat or an Independent.
- Solution: $P(\mathrm{D}$ or I$)=P(\mathrm{D})+P(\mathrm{I})$ = 13/39 + 6/39 = 19/39.


## 5-3 Addition Rule 1- Example

- A day of the week is selected at random. Find the probability that it is a weekend.
- Solution: $P($ Saturday or Sunday) $=P($ Saturday $)+P($ Sunday $)$
$=1 / 7+1 / 7=2 / 7$.


## 5-27 <br> 5-3 Addition Rule 2

```
When two events }A\mathrm{ and }
are not mutually exclusive, the
probability that A or B will
occur is
P(A or B)=P(A)+P(B)-P(A and B)
```

5-28

## 5-3 Addition Rule 2



## 5-3 Addition Rule 2- Example

- In a hospital unit there are eight nurses and five physicians. Seven nurses and three physicians are females. If a staff person is selected, find the probability that the subject is a nurse or a male.
- The next slide has the data.


## 5-3 Addition Rule 2 - Example

| STAFF | FEMALES | MALES | TOTAL |
| :---: | :---: | :---: | :---: |
| NURSES | 7 | 1 | 8 |
| PHYSICIANS | 3 | 2 | 5 |
| TOTAL | 10 | 3 | 13 |

## 5-3 Addition Rule 2 - Example

- Solution: $P$ (nurse or male) $=P$ (nurse) $+P($ male $)-P($ male nurse) $=8 / 13+3 / 13-1 / 13=10 / 13$.


## 5-3 Addition Rule 2 - Example

- On New Year's Eve, the probability that a person driving while intoxicated is 0.32 , the probability of a person having a driving accident is 0.09 , and the probability of a person having a driving accident while intoxicated is 0.06 . What is the probability of a person driving while intoxicated or having a driving accident?


## 5-3 Addition Rule 2 - Example

- Solution:
$P$ (intoxicated or accident)
$=P($ intoxicated $)+P($ accident $)$
- P(intoxicated and accident)
$=0.32+0.09-0.06=0.35$.

