Absolute Value Functions and Transformations

Objectives:

1. To graph an absolute value function by performing transformations on the parent

Vocabulary

Try to define each of these terms. Give an example of each word and leave a bit of space for additions and revisions.

Transformation	Translation
Reflection	

The Absolute Value Function

The absolute value function is defined by f(x) = |x|.

This is the absolute value parent function.

Parent Function

- V-shape
- It is symmetric about the y-axis
- The vertex is the minimum point on the graph

In this Investigation, we are going to discover how to perform transformations on the absolute value function.

Step 1: Press Y= and enter the following equations.

Y1= abs(X)	Y3= abs(X) + 5
Y2= abs(X)+2	Y4 = abs(X) - 3

Step 2: Graph the equations using the ZOOMSTD setting.

Step 3: Describe how the family of graphs y = |x| + k is related to y = |x|.

Step 4: Press Y= and enter the following equations.

Y1= abs(X)	Y3 = abs(X - 4)
Y2= abs(X – 2)	Y4 = abs(X + 5)

Step 5: Graph the equations using the ZOOMSTD setting.

Step 6: Describe how the family of graphs y = |x - h| is related to y = |x|.

Translation

A translation is a

transformation that shifts a graph horizontally or vertically, but doesn't change the overall shape or orientation.

Translation

The graph of

$$y = |x - h| + k$$

is the graph of y = |x|translated h horizontal units and y vertical units.

The new vertex is at (h, k)

In this Investigation, we will continue to expand our knowledge of transformations.

Step 1: Press Y= and enter the following equations.

Y1= abs(X)	Y3= 2*abs(X)
Y2= 5*abs(X)	Y4= (1/2)*abs(X)

Step 2: Graph the equations using the ZOOMSTD setting.

Step 3: Describe how the family of graphs y = a|x| is related to y = |x|.

Stretching and Shrinking

The graph of y = a|x| is graph of y = |x| vertically stretched or shrunk depending on the |a|.

For $ a > 1$	For $ a < 1$
 The graph is vertically stretched, or elongated. 	 The graph is vertically shrunk, or compressed.
• The graph of $y = a x $ is narrower than the graph of $y = x $.	• The graph of $y = a x $ is wider than the graph of $y = x $.

Exercise 1

Use your graphing calculator to graph the following:

1.
$$y = |x|$$

2.
$$y = -|x|$$

Describe how the graph of y = a|x| is related to y = |x| when a < 0.

Reflection

The graph of y = a|x| is graph of y = |x| reflected across the x-axis when a < 0.

Multiple Transformations

In general, the graph of an absolute value function of the form y = a |x - h| + k can involve translations, reflections, stretches or shrinks.

To graph an absolute value function, start by identifying the vertex.

Graphing Absolute Value Functions

Graphing y = a |x - h| + k these things is easy:

- 1. Plot the vertex (h, k).
- 2. Use the a value as slope to plot one point.
- 3. Use symmetry to find a corresponding point.
- 4. Connect the dots in a V-shape.

Exercise 2

Without a graphing calculator, graph the following functions. How do they compare to the parent function?

1.
$$y = |x - 2| + 5$$

2.
$$y = (1/2)|x|$$

3.
$$y = 2|x + 1| - 3$$

$$4. f(x) = -3|x+1|-2$$

Transformations in General

You can perform transformations on the graph of any function in manner similar to transformations on the absolute value function.

The graph of $y = a \cdot f(x - h) + k$ can be obtained from the graph of any function y = f(x) by performing these steps:

- **STEP 1 Stretch or shrink** the graph of y = f(x) vertically by a factor of |a| if $|a| \neq 1$. If |a| > 1, stretch the graph. If |a| < 1, shrink the graph.
- **STEP 2** Reflect the resulting graph from Step 1 in the x-axis if a < 0.
- **STEP 3** Translate the resulting graph from Step 2 horizontally h units and vertically k units.