Solving Exponential and Logarithmic Equations

Same Base

- Solve: $4^{x-2}=64^{x}$

$$
\begin{array}{rlrl}
4^{x-2} & =\left(4^{3}\right)^{x} & & 64=4^{3} \\
4^{x-2} & =4^{3 x} & & \text { If } b^{M}=b^{N}, \text { then } M=N \\
x-2 & =3 x & & \text { If the bases are already }=, \text { just solve } \\
\text { the exponents } \\
-2 & =2 x & & \\
-1 & =x & &
\end{array}
$$

You Do

- Solve $27^{x+3}=9^{x-1}$

$$
\begin{aligned}
& \left(3^{3}\right)^{x+3}=\left(3^{2}\right)^{x-1} \\
& 3^{3 x+9}=3^{2 x-2} \\
& 3 x+9=2 x-2 \\
& x+9=-2 \\
& x=-11
\end{aligned}
$$

Review - Change Logs to Exponents

- $\log _{3} x=2$
- $\log _{x} 16=2$
- $\log 1000=x$

$$
3^{2}=x, \quad x=9
$$

$$
x^{2}=16, \quad x=4
$$

$$
10^{x}=1000, x=3
$$

Using Properties to Solve Logarithmic Equations

- If the exponent is a variable, then take the natural log of both sides of the equation and use the appropriate property.
- Then solve for the variable.

Example: Solving

- $2^{x}=7 \quad \longrightarrow$ problem
- $\ln 2^{x}=\ln 7 \quad$ take \ln both sides
- $x \ln 2=\ln 7 \quad$ power rule
$x=\frac{\ln 7}{\ln 2} \longrightarrow$ divide to solve for x

$$
x=2.807
$$

Example: Solving

$$
e^{x}=72 \longrightarrow \text { problem }
$$

$$
\begin{aligned}
\operatorname{lne}^{x}=\ln 72 & \text { take } \ln \text { both sides } \\
x \ln e=\ln 72 & \text { power rule } \\
x=4.277 & \text { solution: because } \\
& \ln e=?
\end{aligned}
$$

You Do: Solving

$$
\begin{aligned}
2 e^{x}+8 & =20 \\
2 e^{x} & =12 \\
e^{x} & =6 \\
\ln e^{x}=\ln 6 & \longrightarrow \text { problem } \\
x \ln e & =1.792 \\
x & \longrightarrow 1.792
\end{aligned} \quad \text { dividide by } 2 . ~ \text { power rule } 8
$$

Example

- Solve $5^{x-2}=4^{2 x+3}$
- $\ln 5^{x-2}=\ln 4^{2 x+3}$
- $(x-2) \ln 5=(2 x+3) \ln 4$
- The book wants you to distribute...
- Instead, divide by In4
- $(x-2) 1.1609=2 x+3$
- $1.1609 x-2.3219=2 x+3$
- $x \approx 6.3424$

Solving by Rewriting as an Exponential

- Solve $\log _{4}(x+3)=2$
- $4^{2}=x+3$
- $16=x+3$
- $13=x$

You Do

- Solve $3 \operatorname{In}(2 x)=12$
- $\ln (2 x)=4$
- Realize that our base is e, so
- $e^{4}=2 x$
- $x \approx 27.299$
- You always need to check your answers because sometimes they don't work!

Using Properties to Solve Logarithmic Equations

- 1. Condense both sides first (fi necessary).
- 2. If the bases are the same on both sides, you can cancel the logs on both sides.
- 3. Solve the simple equation

Example: Solve for x

- $\log _{3} 6=\log _{3} 3+\log _{3} x \longrightarrow$ problem
- $\log _{3} 6=\log _{3} 3 x \longrightarrow$ condense

$$
6=3 x \longrightarrow \text { drop logs }
$$

$2=x$
solution

You Do: Solve for x

- $\log 16=x \log 2$
\longrightarrow problem
- $\log 16=\log 2^{x} \longrightarrow$ condense $16=2 x \longrightarrow$ drop logs $x=4 \longrightarrow$ solution

You Do: Solve for x

- $\frac{1}{3} \log _{4} x=\log _{4} 4 \quad$ problem
- $\log _{4} x^{\frac{1}{3}}=\log _{4} 4 \longrightarrow$ condense
- $x^{\frac{1}{3}}=4 \longrightarrow$ drop logs
- $\left(x^{\frac{1}{3}}\right)^{3}=4^{3}$
cube each side

$$
X=64 \longrightarrow \text { solution }
$$

Example

- $7 x \log _{2} 5=3 x \log _{2} 5+1 / 2 \log _{2} 25$
- $\log _{2} 5^{7 x}=\log _{2} 5^{3 x}+\log _{2} 25^{1 / 2}$
- $\log _{2} 5^{7 x}=\log _{2} 5^{3 x}+\log _{2} 5^{1}$
- $7 x=3 x+1$
- $4 x=1$

$$
x=\frac{1}{4}
$$

You Do

- Solve: $\log _{7} 7+\log _{7} 2=\log _{7} x+\log _{7}(5 x-3)$

You Do Answer

- Solve: $\log _{7} 7+\log _{7} 2=\log _{7} x+\log _{7}(5 x-3)$
$\log _{7} 14=\log _{7} x(5 x-3)$ $14=5 x^{2}-3 x$
$0=5 x^{2}-3 x-14$
$0=(5 x+7)(x-2)$
$x=\frac{-7}{5}, 2$
Do both answers work?

Final Example

- How long will it take for $\$ 25,000$ to grow to $\$ 500,000$ at 9% annual interest compounded monthly?

$$
A(t)=A_{0}\left(1+\frac{r}{n}\right)^{n t}
$$

Example

$$
A(t)=A_{0}\left(1+\frac{r}{n}\right)^{n t}
$$

$$
500,000=25,000\left(1+\frac{0.09}{12}\right)^{18 t}
$$

$$
20=(1.0075)^{12 t}
$$

$12+\ln (1.0075)=\ln 20$
$t=\frac{\ln 20}{12 \ln 1.0075}$
$\dagger \approx 33.4$

