CONICS

Parabola

- Parabola: the set of all points in a plane that are equidistance from a fixed line and a fixed point not on the line.
- Focus of a Parabola: the fixed point
- Oirectrix: Fixed line

The line through the focus and perpendicular to the directrix is the axis of symmetry

If c is the distance from the vertex to the focus of a parabola, then $|a| = \frac{1}{4c}$.

Consider any parabola with equation $y = ax^2$ and vertex at the origin.

If a > 0, then

- the parabola opens upward
- the focus is at (0, c)
- the directrix is y = -c

If a < 0, then

- the parabola opens downward
- the focus is at (0, -c)
- the directrix is at y = c

Consider any parabola with equation $x = ay^2$.

If a > 0, then

- the parabola opens to the right
- the focus is at (c,0)
- the directrix is at x = -c

If a < 0, then

- the parabola opens to the left
- the focus is at (-c,0)
- the directrix is at x = c

Write an equation for a graph that is the set of all points in the plane that are equidistant from point F(0, 1) and the line y = -1.

You need to find all points P(x, y) such that FP and the distance from P to the given line are equal.

(continued)

$$FP = PQ$$

$$\sqrt{(x-0)^2 + (y-1)^2} = \sqrt{(x-x)^2 + (y-(-1))^2}$$

$$x^2 + (y-1)^2 = 0^2 + (y+1)^2$$

$$x^2 + y^2 - 2y + 1 = y^2 + 2y + 1$$

$$x^2 = 4y$$

$$y = \frac{1}{4}x^2$$

An equation for a graph that is the set of all points in the plane that are equidistant from the point F(0, 1) and the line y = -1 is $y = x^2$. $\frac{1}{4}$

Write an equation for a parabola with a vertex at the origin and a focus at (0, -7).

Step 1: Determine the orientation of the parabola.

Make a sketch.

Since the focus is located below the vertex, the parabola must open downward. Use $y = ax^2$.

Step 2: Find a.

2 EXAMPLE

(continued)

$$|a| = \frac{1}{4c}$$

$$= \frac{1}{4(7)}$$
Since the focus is a distance of units from the vertex, $c = 7$.
$$= \frac{1}{28}$$

Since the parabola opens downward, *a* is negative.

So
$$a = -\frac{1}{28}$$

An equation for the parabola is $y = -x^{2}\frac{1}{28}$

3 EXAMPLE A parabolic mirror has a focus that is located 4 in. from the vertex

of the mirror. Write an equation of the parabola that models the cross section of the mirror.

The distance from the vertex to the focus is 4 in., so c = 4. Find the value of a.

$$a = \frac{1}{4c}$$

$$= \frac{1}{4(4)}$$

=
$$\frac{1}{16}$$
 Since the parabola opens upward, a is positive.

The equation of the parabola is $y = \frac{1}{16}x^2$.

Identify the focus and directrix of the graph of the equation $x = -\frac{1}{8}y^2$.

The parabola is of the form $x = ay^2$, so the vertex is at the origin and the parabola has a horizontal axis of symmetry. Since a < 0, the parabola opens to the left.

$$|a| = \frac{1}{4c}$$

$$|-\frac{1}{8}| = \frac{1}{4c}$$

$$4c = 8$$

$$c = 2$$

The focus is at (-2, 0). The equation of the directrix is x = 2.

5 EXAMPLE

Identify the vertex, the focus, and the directrix of the graph of the equation $x^2 + 4x + 8y - 4 = 0$. Then graph the parabola.

$$x^{2} + 4x + 8y - 4 = 0$$

 $8y = -x^{2} - 4x + 4$ Solve for y , since y is the only term.
 $8y = -(x^{2} + 4x + 4) + 4 + 4$ Complete the square in x .
 $y = -\frac{1}{8}(x + 2)^{2} + 1$ vertex form

The parabola is of the form $y = a(x - h)^2 + k$, so the vertex is at (-2, 1) and the parabola has a vertical axis of symmetry. Since a < 0, the parabola opens downward.

5 EXAMPLE

(continued)

$$|a| = \frac{1}{4c}$$
 $|-\frac{1}{8}| = \frac{1}{4c}$ Substitute $-\frac{1}{8}$ for a .

 $4c = 8$ Solve for c .

 $c = 2$

The vertex is at (-2, 1) and the focus is at (-2, -1). The equation of the directrix is y = 3.

Locate one or more points on the parabola. Select a value for x such as -6.

The point on the parabola with an x-value of -6 is (-6, -1). Use the symmetric nature of a parabola to find the corresponding point (2, -1).