Problems Solved Soler Chapter 12_Logarithms
 Solved

Solving Exponential and Logarithmic Equations

Here we will make use of what we have learned about exponentials and logarithms to solve equations.

One-to-One Property of Exponential Functions

$$
\text { If } b^{n}=b^{m} \quad \text { then } \quad n=m
$$

We may make use of the above property if we are able to express both sides of the equation in terms of the same base as shown here.

A. Solve

$2^{x}=8$
$2^{x}=8$
$2^{x}=2^{3}$
$x=3$

32^{x-2}	$=64$
32^{x-2}	$=64$
$\left(2^{5}\right)^{x-2}$	$=2^{6}$
$2^{5 x-10}$	$=2^{6}$
$5 x-10$	$=6$
$5 x$	$=16$
$x=16 / 5$	

100^{x}	$=1000^{2 x-1}$
100^{x}	$=1000^{2 x-1}$
$\left(10^{2}\right)^{x}$	$=\left(10^{3}\right)^{2 x-1}$
$10^{2 x}$	$=10^{6 x-3}$
$2 x$	$=6 x-3$
$-4 x$	$=-3$
x	$=3 / 4$

81^{-x}	$=9^{-x-2}$
81^{-x}	$=9^{-x-2}$
$\left(9^{2}\right)^{-x}$	$=9^{-x-2}$
$9^{-2 x}$	$=9^{-x-2}$
$-2 x$	$=-x-2$
$-x$	$=-2$
x	$=2$

$4^{2 x-1}$	$=64$
$4^{2 x-1}$	$=64$
$4^{2 x-1}$	$=4^{3}$
$2 x-1$	$=3$
$2 x$	$=4$
x	$=2$

36^{x}	$=216^{x-3}$
36^{x}	$=216^{x-3}$
$\left(6^{2}\right)^{x}$	$=\left(6^{3}\right)^{x-3}$
$6^{2 x}$	$=6^{3 x-9}$
$2 x$	$=3 x-9$
$-x$	$=-9$
x	$=9$

It is not always the case that we will be able to express both sides of an equation in terms of the same base. For this reason we will make use of the following property.

One-to-One Property of Logarithmic Functions - For all real $b, b>0$ and $b \neq 1$

 $\log _{b} x=\log _{b} y \quad$ if and only if $\quad x=y$

Step 2: Apply the power rule for logarithms.

Approximate answer rounded off to the nearest hundredth.

$e^{x-6}=150$
$e^{x-6}=150$
$\ln e^{x-6}=\ln 150$
$(x-6) \cdot \ln e=\ln 150$
$x-6=\ln 150$
$x=6+\ln 150$
$x \neq 11.0106$

$2-10^{x}$	$=-28$
$2-10^{x}$	$=-28$
-10^{x}	$=-30$
10^{x}	$=30$
$\log 10^{x}$	$=\log 30$
$x \log 10$	$=\log 30$
x	$=\log 30$
x	≈ 1.4771

$5(0.3)^{x-2}=30$
$5(.3)^{x-2}=30$
$(.3)^{x-2}=6$
$\log (.3)^{x-2}=\log 6$
$(x-2) \log \cdot 3=\log 6$
$x-2=\frac{\log 6}{\log \cdot 3}$
$x=2+\frac{\log 6}{\log \cdot 3}$
$x \approx .5118$

$2+3^{2 x-3}=10$
$2+3^{2 x-3}=10$
$3^{2 x-3}=8$
$\log 3^{2 x-3}=\log 8$
$(2 x-3) \log 3=\log 8$
$2 x-3=\frac{\log 8}{\log 3}$
$2 x=3+\frac{\log 8}{\log 3}$
$x=\frac{3}{2}+\frac{\log 8}{2 \cdot \log 3}$
$x \approx 2.4464$

When solving exponential equations and using the above process the rule of thumb is to choose the common logarithm unless the equation involves e. We choose these because there is a button for them on the calculator. But certainly we could use any base we wish; this is the basis for the derivation of the change of base formula.

We can also use the one-to-one property for logarithms to solve logarithmic equations. If we are given an equation with a logarithm of the same base on both sides we may simply equate the arguments.

Be sure to check to see if the solutions that we obtain solve the original logarithmic equation. In this manual we will put a check mark next to the solution after we determine that it really does solve the equation. This process sometimes results in extraneous solutions so we must check our answers.

Step 4: We must check to see if they work. Check $x=1 / 2$:

$$
\begin{aligned}
& \log _{3} 2+2 \log _{3}\left(\frac{1}{2}\right) \stackrel{?}{=} \log _{3}\left(7 \cdot \frac{1}{2}-3\right) \\
& \log _{3} 2+\log _{3}\left(\frac{1}{2}\right)^{2} \stackrel{?}{=} \log _{3}\left(\frac{1}{2}\right) \\
& \log _{3}\left(2 \cdot \frac{1}{4}\right) \stackrel{?}{=} \log _{3}\left(\frac{1}{2}\right) \\
& \log _{3}\left(\frac{1}{2}\right)=\log _{3}\left(\frac{1}{2}\right)
\end{aligned}
$$

check $x=3$:

$$
\begin{aligned}
\log _{3} 2+2 \log _{3}(3) & \stackrel{?}{=} \log _{3}(7 \cdot 3-3) \\
\log _{3} 2+\log _{3} 3^{2} & \stackrel{?}{=} \log _{3}(18) \\
\log _{3}(2 \cdot 9) & =\log _{3}(18)
\end{aligned}
$$

C. Solve

$\log _{2}(3 x)=\log _{2}(2 x+7)$
$\log _{2}(3 x)=\log _{2}(2 x+7)$
$3 x=2 x+7$
$x=7 \sim$
check: $\log _{2}(3 \cdot 7)=\log _{2}(2 \cdot 7+7)$
$\log _{2}(21)=\log _{2}(21)-$
solution set $\{7\}$

$\ln (2 x+10)=2 \ln 2$
$\ln (2 x+10)=2 \ln 2$
$\ln (2 x+10)=\ln 2^{2}$
$2 x+10=4$
$2 x=-6$
$x=-3$
check: $x=-3$
$\ln (2(-3)+10) ? 2 \ln 2$
$\ln 4=\ln 2^{2}$
Solution set $\{-3\}$

$\log _{2} 5+\log _{2} x=\log _{2}(x+20)$
$\log _{2} 5+\log _{2} x=\log _{2}(x+20)$
$\log _{2}(5 x)=\log _{2}(x+20)$
$5 x=x+20$
$4 x=20$
$x=5$
check: $\log _{2} 5+\log _{2} 5 \stackrel{?}{=} \log _{2}(5+20)$
$\log _{2}(5.5)=\log _{2}(25)$
$\log _{2}(25)=\log _{2}(25)$
Solution Set $\{5\}$

$$
\begin{gathered}
\log (x+1)+\log (x-1)=\log 8 \\
\log (x+1)+\log (x-1)=\log 8 \\
\log (x+1)(x-1)=\log 8 \\
\log \left(x^{2}-1\right)=\log 8 \\
x^{2}-1=8 \\
x^{2}=9 \\
=-3 \text { or } x=3 \\
\text { extraneous } \\
\text { Solution set }\{3\}
\end{gathered}
$$

$$
\begin{gathered}
\log _{5} x+\log _{5}(x-3)=\log _{5} 10 \\
\log _{5} x+\log _{5}(x-3)=\log _{5} 10 \\
\log _{5} x(x-3)=\log _{5} 10 \\
x^{2}-3 x=10 \\
x^{2}-3 x-10=0 \\
(x+2)(x-5)=0 \\
x+2=0 \text { or } x-5=0 \\
x=-2 \quad x=5 \\
\text { extraneous }
\end{gathered}
$$

$$
\text { solution set }\{5\}
$$

Of course, equations like these are very special. Most of the problems that we will encounter will not have a logarithm on both sides, as with the next set.

If the answer to our logarithmic equation makes the argument of it negative then it is extraneous. This does not preclude negative answers. We must be sure to check all of our solutions.
Tip: Not all negative solutions are extraneous! Look at the

Step 2: Apply the definition of the logarithm and change it to an exponential equation.

Step 4: We must check to see if the solutions work.

$$
\begin{gathered}
\begin{array}{c}
\text { check: } x=8 \\
\log _{2} 8+\log _{2}(8-4) \stackrel{?}{=} 5 \\
\log _{2}(8.4) \stackrel{?}{=} 5 \\
\log _{2} 32=5 \\
\text { check } x=-4 \\
\log _{2}-4+\log _{2}(-4-4) \stackrel{?}{=} 5 \\
\log _{2}-4+\log _{2}(-8) \neq 5 \\
\text { undefined }
\end{array}
\end{gathered}
$$ following problems and we can see that some have negative answers.

D. Solve

$\log _{6}(2 x+6)=2$
$\log _{6}(2 x+6)=2$
$2 x+6=6^{2}$
$2 x+6=36$
$2 x=30$
$x=15$
Solution Set $\{15\}$

$\log (2 x+30)=1$
$\log _{10}(2 x+30)=1$
$2 x+30=10^{\prime}$
$2 x=-20$
$x=-10$
Solution set $\{-10\}$

$\ln \left(x^{2}-4\right)=0$
$\ln \left(x^{2}-4\right)=0$
$x^{2}-4=e^{0}$
$x^{2}-4=1$
$x^{2}=5$
$x= \pm \sqrt{5}$
Solution Set $\{-\sqrt{5}, \sqrt{5}\}$

$\log _{49}(x+1)=\frac{1}{2}$
$\log _{49}(x+1)=\frac{1}{2}$
$x+1=49^{\frac{1}{2}}$
$x+1=\sqrt{49}$
$x+1=7$
$x=6$
solution set $\{6\}$

The check mark indicates that we actually plugged the answers in to see that they do indeed solve the original. Please do not skip this step, extraneous solutions occur often.
$\log _{2}(15 x-1)-\log _{2}(x-1)=4$

$$
\log _{2}(15 x-1)-\log _{2}(x-1)=4
$$

$$
\log _{2}\left(\frac{15 x-1}{x-1}\right)=4
$$

$$
\frac{15 x-1}{x-1}=2^{4}
$$

$$
15 x-1=16(x-1)
$$

$$
15 x-1=16 x-16
$$

$$
-x=-15
$$

$$
x=15 \quad
$$

solution set $\{15\}$

$$
\begin{gathered}
\log _{4} x+\log _{4}(x-12)=3 \\
\log _{4} x+\log _{4}(x-12)=3 \\
\log _{4} x(x-12)=3 \\
x(x-12)=4^{3} \\
x^{2}-12 x=64 \\
x^{2}-12 x-64=0 \\
(x+4)(x-16)=0 \\
x+4=0 \text { on } x-16=0 \\
x=-4 \quad x=16 \\
\text { extraneous } \\
\text { Solution set }\{16\}
\end{gathered}
$$

$$
\begin{gathered}
2 \log (11 x-12)+1=3 \\
2 \log (1 / x-12)+1=3 \\
2 \log (11 x-12)=2 \\
\log (1 / x-12)=1 \\
11 x-12=10^{\prime} \\
11 x=22 \\
x=2
\end{gathered}
$$

Solution set $\{2\}$

$$
\begin{gathered}
\ln x-\ln (x-1)=1 \\
\ln x-\ln (x-1)=1 \\
\ln \left(\frac{x}{x-1}\right)=1 \\
\frac{x}{x-1}=e^{\prime} \\
x=e(x-1) \\
x=e x-e \\
x-e x=-e \\
x(1-e)=-e \\
x=\frac{-e}{1-e}=\frac{e}{e-1}
\end{gathered}
$$

Solution Set $\left\{\frac{e}{e-1}\right\}$
$\log _{5} x+\log _{5}(2 x-9)=1$
$\log _{5} x+\log _{5}(2 x-9)=1$
$\log _{5} x(2 x-9)=1$
$x(2 x-9)=5^{\prime}$
$2 x^{2}-9 x-5=0$
$(2 x+1)(x-5)=0$
$2 x+1=0$ or $x-5=0$
$2 x=-1 \quad x=5$ -
$x=-1 / 2$
extraneous
Solution Set $\{5\}$

$$
\begin{gathered}
\log _{6} x=1-\log _{6}(x-1) \\
\log _{6} x=1-\log _{6}(x-1) \\
\log _{6} x+\log _{6}(x-1)=1 \\
\log _{6} x(x-1)=1 \\
x(x-1)=6^{\prime} \\
x^{2}-x-6=0 \\
(x+2)(x-3)=0 \\
x+2=0 \text { or } x-3=0 \\
x=-\nmid x \\
\text { extraneous } x=3 \\
\text { solution set }\{3\}
\end{gathered}
$$

Be sure to check all solutions to logarithmic equations because some might be extraneous!

