\qquad
\qquad

10-7 Geometric Sequences (Pages 567-572)

A sequence of numbers such as $2,4,8,16,32, \ldots$ forms a geometric sequence. Each number in a geometric sequence increases or decreases by a common factor r, called the common ratio.

Geometric Sequence	A geometric sequence can be written in the form of $a, a r, a r^{2}, a r^{3}, a r^{4}, \ldots$ where $r \neq 0$ or 1.
Calculating the nth term	The nth term of a geometric series with initial term a_{1} and common ratio r is calculated by $a_{n}=a_{1} \cdot r^{n-1}$.

Examples

a. Determine if the sequence is geometric.
$-1,3,-9,27, \ldots$
$\frac{27}{-9}=-3 \quad$ Find the common ratio.
$(-1)(-3), 3(-3) \quad$ Test for each element. Yes, the sequence is geometric.
b. Find the 12 th term of the sequence 4, 16, 64, 256,....
$a_{n}=a_{1} \cdot r^{n-1} \quad$ Formula for the nth term.
$\frac{16}{4}=4 \quad$ Find the common ratio.
$a_{12}=4 \cdot 4^{12-1} \quad$ Substitute.
$a_{12}=4 \cdot 4^{11} \quad$ Simplify.
$a_{12}=4 \cdot 4,194,304 \quad$ Multiply.
$a_{12}=16,777,216 \quad$ Multiply.

Practice

Find the next three terms in each sequence.

1. $\frac{1}{2},-1 \frac{1}{2}, 4 \frac{1}{2},-13 \frac{1}{2}, \ldots$
2. $-2,-15,-112.5,-843.75, \ldots$
3. $1,6,36,216, \ldots$
4. $56,28,14,7, \ldots$
5. $64,-48,36,-27, \ldots$
6. $2,22,242,2662, \ldots$
7. Find the 10 th term of the geometric sequence whose first term is 3 and common ratio is -2 .
8. Find the 9 th term of $25,12.5,6.25,3.125, \ldots$.
9. A geometric sequence begins with 5 and has a common ratio of $-\frac{1}{4}$. What is the sequence's 4th term?
10. Standardized Test Practice The 15 th term of a geometric sequence is 32,768 . Which choice shows the possible first term and the possible common ratio?
A 2,2
B 4,3
C 15,4
D 8, - 4
[^0]
[^0]:

