absolute

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Describe how the graph is like the graph of y = |x| and how it is different.

- The graphs have the same y-intercept. The graph above is steeper than y = |x|. a.
- b. The graph is the same as y = |x|.
- The graphs are the same shape. The y-intercept of y = |x| is 0 and the x-intercept of the c. graph above is -4.
- d. The graphs are the same shape. The y-intercept of y = |x| is 0 and the y-intercept of the graph above is -4.

2. Describe how the graph is like the graph of y = |x| and how it is different.

- a. The graphs are the same shape. The *y*-intercept of y = |x| is 0 and the *x*-intercept of the graph above is -7.
- b. The graphs are the same shape. The *y*-intercept of y = |x| is 0 and the *y*-intercept of the graph above is -7.
- c. The graph is the same as y = |x|.
- d. The graphs have the same *y*-intercept. The graph above is steeper than y = |x|.
- 3. Describe how the graph is like the graph of y = |x| and how it is different.

- a. The graphs have the same y-intercept. The graph above is steeper than y = |x|.
- b. The graphs are the same shape. The *y*-intercept of y = |x| is 0 and the *x*-intercept of the graph above is -11.
- c. The graph is the same as y = |x|.
- d. The graphs are the same shape. The *y*-intercept of y = |x| is 0 and the *y*-intercept of the graph above is -11.

Write an equation for each translation of y = |x|.

9.	6 units down a. $y = x + 6$ b. $y = x - 6$	c. d.	y = -6x $y - 6 = x $
10.	3 units down a. $y - 3 = x $ b. $y = x + 3$	c. d.	y = x - 3 $y = -3x $
11.	6.5 units up a. $y = x + 6.5$ b. $y = x - 6.5$	c. d.	y = 6.5x y + 6.5 = x
12.	5.5 units up a. $y = 5.5x $ b. $y = x + 5.5$	c. d.	y = x - 5.5 y + 5.5 = x

 13.	12.5 units up a. $y + 12.5 = x $ b. $y = x - 12.5$			c. d.	y = x + 12.5 y = 12.5x		
 14.	6 units left a. $y = x + 6 $	b.	y = x - 6	c.	y = x + 6	d.	y = x - 6
 15.	16.5 units right a. $y = x - 16.5 $	b.	y = x + 16.5	c.	y = x - 16.5	d.	<i>y</i> = <i>x</i> + 16.5

Graph each equation by translating y = |x|.

ID: A

Short Answer

21. Translate $y = \left|\frac{1}{3}x\right|$ to graph $y = \left|\frac{1}{3}x\right| + 2$