Lesson 9-3

Rational Functions and Their Graphs

Lesson Objectives		NAEP 2005 Strand: Algebra
V	Identifying properties of rational functions	Topic: Algebraic Representations
V	Graphing rational functions	Local Standards:

Key Concepts

Rational Function A rational function f(x) is a function that can be written as $f(x) = \frac{P(x)}{Q(x)}$, where and are polynomial functions. The domain of

f(x) is all real numbers except those for which Q(x) =

Vertical Asymptotes

The rational function $f(x) = \frac{P(x)}{Q(x)}$ has a point of discontinuity for each real of Q(x).

If P(x) and Q(x) have no common real zeros, then the graph of f(x) has a

asymptote at each real zero of Q(x).

If P(x) and Q(x) have a common real zero *a*, then there is a _____ in the graph or a vertical asymptote at x =_____.

Horizontal Asymptotes

- The graph of a rational function has at most horizontal asymptote.
- The graph of a rational function has a ______ asymptote at
 y = 0 if the degree of the ______ is _____ than

the degree of the

• If the ______ of the numerator and the denominator are

equal, then the graph has a _____ asymptote at y = | ,

where *a* is the coefficient of the term of highest ______ in the

numerator and b is the coefficient of the term of highest degree in the

• If the degree of the ______ is greater than the degree of the

, then the graph has horizontal asymptote.

Example

• Finding Points of Discontinuity For each rational function, find any points of discontinuity.

Quick Check

1. For each rational function, find any points of discontinuity.

Example

2 Finding Vertical Asymptotes Describe the vertical asymptotes and holes for the graph of each rational function.

Quick Check

2. Describe the vertical asymptotes and holes for the graph of each rational function.

Examples

9	Finding Horizontal Asymptotes Find the horizontal asymptote of $y = \frac{-4x + 3}{2x + 1}$.			
	Divide the numerator by the denominator as shown at the right. -2			
	The function $y = \frac{-4x+3}{-4x+3}$ can be written as $y = \frac{1}{2x+1} = \frac{2x+1}{-4x+3}$			
	The function $y = 2x + 1$ can be written as $y = 2x + 1$ 2x + 1 $(-(-4x -))$			
	Its graph is a translation of $y = \frac{5}{2x+1}$.			
	The horizontal asymptote is $y = $			
9	Sketching Graphs of Rational Functions Sketch the graph $y = \frac{x+1}{(x-2)(x+2)}$.			
-	The degree of the denominator is greater than the degree of the numerator. so			
	the x-axis is the $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$. When $x > 3$, y is			
	positive. So as x increases, the graph approaches the v-axis from above. When			
	x < -2, v is So as x decreases the graph approaches the v-axis			
	from			
	Since is the zero of the numerator, the <i>x</i> -intercept is			
	at Since and are the zeros of the denominator,1			
	the vertical asymptotes are at $x = $ and $x = $.			
	Calculate the values of y for values of x near the asymptotes. -4 O 2 4			
	Plot those points and sketch the graph. -1			
Qı	uick Check			
3.	Find the horizontal asymptote of the graph of each rational function.			
	a. $y = \frac{-2x+6}{1}$ b. $y = \frac{2x^2+5}{1}$			
	$x - 1$ $y - x^2 + 1$			
4	Shotch the graph of $y = -\frac{x+3}{x+3}$			
4.	Sketch the graph of $y = \frac{x+3}{(x-1)(x-5)}$.			
4.	Sketch the graph of $y = \frac{x+3}{(x-1)(x-5)}$.			
4.	Sketch the graph of $y = \frac{x+3}{(x-1)(x-5)}$.			
4.	Sketch the graph of $y = \frac{x+3}{(x-1)(x-5)}$.			
4.	Sketch the graph of $y = \frac{x+3}{(x-1)(x-5)}$.			
4.	Sketch the graph of $y = \frac{x+3}{(x-1)(x-5)}$.			