Rational Exponents

Practice 7-4

Simplify each expression. Assume that all variables are positive.

1. $27^{\frac{1}{3}}$	2. $(81^{\frac{1}{4}})^4$	3. $(32^{\frac{1}{5}})^5$
4. $(256^4)^{\frac{1}{4}}$	5. 7 ⁰	6. $8^{\frac{2}{3}}$
7. $(-1)^{\frac{1}{5}}$	8. $(-27)^{\frac{2}{3}}$	9. $16^{\frac{1}{4}}$
10. $x^{\frac{1}{2}} \cdot x^{\frac{1}{3}}$	11. $2y^{\frac{1}{2}} \cdot y$	12. $(8^2)^{\frac{1}{3}}$
13. 3.6 ⁰	14. $\left(\frac{1}{16}\right)^{\frac{1}{4}}$	15. $\left(\frac{27}{8}\right)^{\frac{2}{3}}$
16. $\sqrt[8]{0}$	17. $(3x^{\frac{1}{2}})(4x^{\frac{2}{3}})$	18. $\frac{12y^{\frac{1}{3}}}{4y^{\frac{1}{2}}}$
19. $(3a^{\frac{1}{2}}b^{\frac{1}{3}})^2$	20. $(y_3^2)^{-9}$	21. $\left(a^{\frac{2}{3}}b^{-\frac{1}{2}}\right)^{-6}$
22. $y^{\frac{2}{5}} \cdot y^{\frac{3}{8}}$	23. $\left(\frac{x^{\frac{4}{7}}}{x^{\frac{2}{3}}}\right)$	24. $(2a^{\frac{1}{4}})^3$
25. $81^{-\frac{1}{2}}$	26. $(2x^{\frac{2}{5}})(6x^{\frac{1}{4}})$	27. $(9x^4y^{-2})^{\frac{1}{2}}$

28. The interest rate r required to increase your investment p to the amount *a* in *t* years is found by $r = \left(\frac{a}{p}\right)^{\frac{1}{t}} - 1$. What interest rate would be required to increase your investment of \$2700 to \$3600 over three years? Round your answer to the nearest tenth of a percent.

Write each expression in radical form.

29. $x^{\frac{4}{3}}$	30. $(2y)^{\frac{1}{3}}$	31. <i>a</i> ^{1.5}
32. $b^{\frac{1}{5}}$	33. $z^{\frac{2}{3}}$	34. $(ab)^{\frac{1}{4}}$
35. <i>m</i> ^{2.4}	36. $t^{-\frac{2}{7}}$	37. <i>a</i> ^{-1.6}
Write each expression in	exponential form.	
38. $\sqrt{x^3}$	39. $\sqrt[3]{m}$	40. $\sqrt{5y}$
41. $\sqrt[3]{2y^2}$	42. $(\sqrt[4]{b})^3$	43. $\sqrt{-6}$
44. $\sqrt{(6a)^4}$	45. $\sqrt[5]{n^4}$	46. $\sqrt[4]{(5ab)^3}$