Binomial Radical Expressions

Name

Multiply each pair of conjugates.

1. $(3\sqrt{2}-9)(3\sqrt{2}+9)$ **2.** $(1-\sqrt{7})(1+\sqrt{7})$ **3.** $(5\sqrt{3}+\sqrt{2})(5\sqrt{3}-\sqrt{2})$

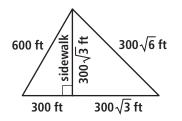
Add or subtract if possible.

5. $5\sqrt{2} + 2\sqrt{3}$ **6.** $3\sqrt{7} - 7\sqrt[3]{x}$ **7.** $14\sqrt[3]{xy} - 3\sqrt[3]{xy}$ **4.** $9\sqrt{3} + 2\sqrt{3}$

Rationalize each denominator. Simplify the answer.

10. $\frac{1+\sqrt{5}}{1-\sqrt{5}}$ **11.** $\frac{2+\sqrt{12}}{5-\sqrt{12}}$ 9. $\frac{5}{2+\sqrt{3}}$ 8. $\frac{2}{2\sqrt{3}-4}$

Simplify.


12. $3\sqrt{32} + 2\sqrt{50}$ **13.** $\sqrt{200} - \sqrt{72}$ **14.** $\sqrt[3]{81} - 3\sqrt[3]{3}$ **15.** $2\sqrt[4]{48} + 3\sqrt[4]{243}$

Multiply.

16. $(1-\sqrt{5})(2+\sqrt{5})$ **17.** $(1+4\sqrt{10})(2-\sqrt{10})$ **18.** $(1-3\sqrt{7})(4-3\sqrt{7})$ **20.** $(\sqrt{2} + \sqrt{7})^2$ **21.** $(2\sqrt{3} + 3\sqrt{2})^2$ **19.** $(4 - 2\sqrt{3})^2$

Simplify. Rationalize all denominators. Assume that all variables are positive.

- **22.** $\sqrt{28} + 4\sqrt{63} 2\sqrt{7}$ **23.** $6\sqrt{40} - 2\sqrt{90} + 3\sqrt{160}$ **24** $3\sqrt{12} + 7\sqrt{75} - \sqrt{54}$ **25** $4\sqrt[3]{81} + 2\sqrt[3]{72} - 3\sqrt[3]{24}$ **27.** $6\sqrt{45v^2} + 4\sqrt{20v^2}$ **26.** $3\sqrt{225x} + 5\sqrt{144x}$ **29.** $(\sqrt{x} - \sqrt{3})(\sqrt{x} + \sqrt{3})$ **28.** $(3\sqrt{y} - \sqrt{5})(2\sqrt{y} + 5\sqrt{5})$ **31.** $\frac{2 + \sqrt{14}}{\sqrt{7} + \sqrt{2}}$ **32.** $\frac{2 + \sqrt[3]{x}}{\sqrt[3]{x}}$ **30.** $\frac{3-\sqrt{10}}{\sqrt{5}-\sqrt{2}}$
- **33.** A park in the shape of a triangle has a sidewalk dividing it into two parts.

- **a.** If a man walks around the perimeter of the park, how far will he walk?
- **b.** What is the area of the park?

4