

Step 1: Make a table of values.

x	3 ^x	У
-3	3 ⁻³	$\frac{1}{27} = .037$
-2	3-2	$\frac{1}{9} = .1$
-1	3-1	$\frac{1}{3} = .\overline{3}$
0	3 ⁰	1
1	3 ¹	3
2	3 ²	9
3	3 ³	27

Step 2: Graph the coordinates. Connect the points with a smooth curve.

- **2 EXAMPLE** The population of the United States in 1994 was almost 260 million with an average annual rate of increase of about 0.7%.
- **a.** Find the growth factor for that year.

b = 1 + <u>r</u>	
= 1 + 0.007	Substitute 0.7%, or 0.007 for r.
= 1.007	Simplify.

b. Suppose the rate of growth had continued to be 0.7%.Write a function to model this population growth.

<u>Relate:</u> The population increases exponentially, so $y = ab^x$ <u>**Define:**</u> Let x = number of years after 1994. Let y = the population (in millions).

Explori	ng Exponential Models		PEARSON
Lesson o	Additional Examples		Algebra 2
OBJECTIVE	2 EXAMPLE (continued)		
	<u>Write:</u> y = a(1.007)⊠ 260 = a(1.007) ⁰	To find a , substitute the 1994 valu $y = 260, x = 0$.	es:
	260 = <i>a</i> • 1	Any number to the zero power equ	uals 1.
	260 = <i>a</i>	Simplify.	
	$y = 260(1.007)^{x}$	Substitute <i>a</i> and <i>b</i> into $y = ab^x$.	

 $y = 260(1.007)^{x}$ models U.S. population growth.

Exploring Exponential Models			
Lesson 8-1			
	Additional Examples		Algebra 2
OBJECTIVE	3 EXAMPLE Writ includes (1, 6	e an exponential function <i>y</i> = <i>ab</i> ^x for a graph tha 6) and (0, 2).	ıt
	$y = ab^{x}$ $6 = ab^{1}$ $\frac{6}{b} = a$	Use the general term. Substitute for x and y using (1, 6). Solve for a .	
	$2 = \frac{6}{b}b^0$	Substitute for <i>x</i> and <i>y</i> using (0, 2) and for <i>a</i> using	ng <u>6</u> .
	$2 = \frac{6}{b} \cdot 1$	Any number to the zero power equals 1.	
	$2 = \frac{6}{b}$	Simplify.	
	<i>b</i> = 3	Solve for <i>b</i> .	

Exploring Exponential Models			PEARSON
Lesson 8-	1		
	Additional Examples		Algebra 2
OBJECTIVE	3 EXAMPLE (COR	ntinued)	
	$a = \frac{6}{b}$	Use your equation for <i>a</i> .	
	$a = \frac{6}{3}$	Substitute 3 for <i>b</i> .	
	a = 2	Simplify.	
	$y = 2 \cdot 3^x$	Substitute 2 for a and 3 for b in $y = ab^x$.	
	The exponential	for a graph that includes $(1, 6)$ and $(0, 2)$ is $y = 2$	• 3 ^x .

EXAMPLE Without graphing, determine whether the function $y = 3\left(\frac{2}{3}\right)^{x}$ represents exponential growth or decay.

In
$$y = 3\left(\frac{2}{3}\right)^{x}$$
, $b = \frac{2}{3}$.

Since b < 1, the function represents exponential decay.

OBJECTIVE

5

EXAMPLE Graph $y = 36(0.5)^x$. Identify the horizontal asymptote.

Step 1: Make a table of values.

x	-3	-2	-1	0	1	2	3
У	288	144	72	36	18	9	$4\frac{1}{2}$

Step 2: Graph the coordinates. Connect the points with a smooth curve.

As x increases, y approaches 0.

The horizontal asymptote is the x-axis, y = 0.

OBJECTIVE

6

EXAMPLE Suppose you want to buy a used car that costs \$11,800. The expected depreciation of the car is 20% per year. Estimate the depreciated value of the car after 6 years.

The decay factor b = 1 + r, where *r* is the annual rate of change.

- b = 1 + r Use *r* to find *b*.
 - = 1 + (-0.20) = 0.80 Simplify.

Write an equation, and then evaluate it for x = 6.

<u>Relate:</u> The value of the car decreases exponentially; b = 0.8.

Define: Let \mathbf{X} = number of years. Let \mathbf{Y} = value of the car.

The car's depreciated value after 6 years will be about \$3,090.

